CIS 22A Section 05Z Fall 2024 BEGINNING PROGRAMMING METHODOLOGIES IN C++

INSTRUCTOR: Doug Case **E-MAIL:** <u>CaseDoug@fhda.edu</u>

FINAL: Synchronous Zoom Monday, December 9, 2024, from 1:45 PM – 3:45 PM

- **LECTURES:** Monday / Wednesday 1:30 PM 3:20 PM on Zoom. Lectures will not be recorded.
- **OFFICE HOURS:** Thursday 3:30 pm 4:30 pm (with online with Zoom link in Canvas) Hours subject to change due to other meetings that others schedule. Also by appointment (please email me to make an appointment).
- Please know that you may email me your questions. Monday through Friday I will generally reply within 24 hours; after 5:00 pm on Friday and over the weekend the guaranteed response time is 48 hours.

Prerequisites:

Advisory: English Writing 211 and Reading 211 (or Language Arts 211), or English as a Second Language 272 and 273; Mathematics 114 or equivalent. CIS 22A was formerly Computer Information Systems 71A. (Students may receive credit for either Computer Information Systems (22A and 22B) or 27, but not both.).

Course Description:

An introduction to computer programming. Its primary objective is to teach problem solving using the C++ programming language. Emphasis will be placed on structured procedural programming with an introduction to object-oriented programming. Designed primarily for computer science and related transfer majors.

Student Learning Outcome: Design solutions for introductory level problems using appropriate design methodology incorporating elementary programming constructs. **Student Learning Outcome**: Create algorithms, code, document, debug, and test introductory level C++ programs.

Student Learning Outcome: Read, analyze and explain introductory level C++ programs.

Course Outline: Please refer to course calendar below. But note that Canvas is the source of truth.

Attendance:

- In order not to be dropped as a "no-show" you must complete the "Week 1 Student Information Survey Quiz" in Canvas Week 1 by Friday September 27.
- > You are expected to actively work along with each of the lessons.
- > You are expected to login into Canvas at least once per day.
- > You must complete quizzes, midterms, and final on calendared day.
- You will not be automatically dropped once you have completed the introductory survey assignment. Thus, be sure to withdraw officially to avoid 'F' grade on your transcript.

Required Text:

ZyBooks C++ This is for **free** to you this quarter. (Do not go to the zyBooks website and create a new account)

Click on your zyBooks link in your learning management system (Canvas)
 Subscribe

Recommended Text & Resources:

- For those of you who like to have a text to read and follow along with. This is totally *optional* but section numbers will be provided. Solutions for Starting Out with C++: From Control Structures through Objects, 9th Edition by Gaddis IBN eText: ISBN: MTC:28782070 ISBN-13: 978-0134498379 ISBN-10: 0134498372 This is the same text as often used by instructors for CIS 22B N.B. Earlier editions may suffice but page numbers will be off.
- Optional CodeLab Tutorial See Welcome module on Canvas for how to register and for access key. This is free! TCAB-31552-GQLE-60

Assistance:

- Integrated Development Environments (IDEs) alias compilers
 - Dev C++ or Visual Studio are the easiest to get started with for PC user
 Mac users generally use <u>Xcode</u>. This optional video might be helpful for getting started with Xcode: https://www.youtube.com/watch?v=-H EyIqBNDA

You may use the IDE of your choice. Tutors can help you with installing this starting the week of September 30

This will not work for too long, but can be helpful to get started: <u>https://www.onlinegdb.com/online_c++_compiler</u>

- Course materials are available on https://deanza.instructure.com/login .
- Videos are available online on how to install your compiler and the steps necessary to write your programs.
- E-mail messages and questions to <u>CaseDoug@fhda.edu</u> (usually quicker than through Canvas). For security purposes, unsolicited attachments will not be downloaded. Emails received Monday through Friday will be answered within 24 hours. Phone conferences may also be offered as needed but student needs to provide phone number and accept blocked caller ID.
- CIS has its own teaching assistants program as well as one-on-one tutoring: Go to the following URL

https://www.deanza.edu/cis/tutoringOnline.html

Grading, and approximate weighting:

Programming Lab Assignments	35%
Online Tutorial Work (ZyBooks Assignments)	10%
Quizzes / class online hands-on participation if any	15%
Midterms (2)	20% (10% each)
Final	20%

Course letter grades will be assigned:

A+	A	A-	B+	В	B-	C+	С	D	F
99+%	92-98%	90-91%	88-89%	82-87%	80-81%	78-79%	70-78%	60-69%	<60%

Where percentages are rounded to the nearest whole number.

Programming Lab assignments will be graded on the following criteria:1) correctness3) style, clarity, and documentation2) structure4) theme issues

Late Lab 0 - 6 assignments will be accepted for one week after the due date with a 5-point penalty. After the one-week limit the assignment will receive no credit. Lab 7 and the "Hands On" Online Activities will not be accepted late. The midterms and final must be taken on calendared dates. Quizzes and zyBooks assignments must be done on time or will receive a zero.

All assignments/tests submitted through Canvas LMS only. Assignments submitted on time will receive feedback within one week. Assignments submitted +48 or more hours early sometimes receive feedback in less time, usually within 24 hours, and there sometimes will be an opportunity for you correct the code if there are errors or omissions.

Extra credit opportunities:

Some labs will have bonus points added when solution is creative, documentation is extra informative, lab is submitted early, and/or code is exceptionally easy to read. Labs that are submitted 48 or more hours early will get an extra 2 points of extra credit.

Academic Honesty

All programming assignments are expected to be your *own original* code. Never give a soft copy or a hard copy of any lab assignment to another classmate or post it on the internet where it is accessible to other students. Any duplicate assignments submitted will receive zero points without regard to who originated and who copied or where the code was copied from (such as the internet).

Disability Accommodations:

De Anza College views disability as an important aspect of diversity, and is committed to providing equitable access to learning opportunities for all students.

Disability Support Services (DSS) is the campus office that collaborates with students who have disabilities to provide and/or arrange reasonable accommodations If you have, or think you have, a disability in any area such as, mental health, attention, learning, chronic health, sensory, or physical, please contact DSS to arrange a confidential discussion regarding equitable access and reasonable accommodations.

If you are registered with DSS and have accommodations set by a DSS counselor, please be sure that your instructor has received your accommodation letter from Clockwork early in the quarter to review how the accommodations will be applied in the course. Students who need accommodated test proctoring must meet appointment booking deadlines at the Testing Center. a) Midterm exam be booked at least five (5) business days in advance of the instructor approved exam date/time. b) Final exams must be scheduled seven (7) business days/weekdays in advance of the instructor approved exam date/time. Failure to meet appointment booking deadlines will result in the forfeit of testing accommodations and you will be required to take your exam with the class.

You may reach DSS remotely:

• Email: <u>dss@deanza.edu</u>

• Phone: 408.864.8753

Motto:

"You learn to play tennis by playing tennis. You learn to program by writing programs."

Important Dates

Friday October 4, 2024?: Last day to add? Confirm this date on De Anza Academic Calendar web site or Registrar.

Saturday, October 5, 2024?: Check on your myPortal for the last day to drop with a refund? Confirm this date on De Anza Academic Calendar web site or Registrar. Friday, November 15, 2024: Last day to drop with a 'W'.

Holidays

November 11 - Veteran's Day - no classes, offices closed

Tentative Dates below subject to change and will be reflected in Canvas. Canvas is the source of truth.

CIS22A

Topic – Numbers in () refer to sections in Gaddis textbook	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Parts of a Computer; Programming Languages; *First Program (1.1 -> 1.7, 2.1->2.2, 3.1)	23	24	25	26	27 Student Survey	28	29 Zy Module1
*Binary Number System; *Design Tools; Fundamentals of 'C++' (2.3 -> 2.16)	30	1	2 Lab 0	3	4	5 Lab 1A	6 Zy Module2
October							
Торіс	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Expressions & their evaluation (3.2 -> 3.6); More about I/O (3.7-3.8) Math "Built-In" Functions (3.9)	7	8	9	10 Lab 1B	11 Quiz 1	12	13 Zy Module3
Functions with no parameters $(6.1->6.3)$ Selection $(4.1 -> 4.9)$	14	15	16	17 Lab 2	18 Quiz 2	19	20 Zy Module4
Selection (4.10 -> 4.14) Functions with parameters (6.4)	21	22	23 Mid- term 1 (Ch 1-3)	24 Lab 3	25	26	27 Zy Module5
Introduction to loops (while loops) (5.1 -> 5.4) Looping (5.7, 5.8)	28	29	30	31	1 Quiz 3	2 Lab 4	3
November							
<i>do while & for loops</i> (5.5 -> 5.6, 5.9) Nested loops (5.10) Loops with Files (5.11)	4	5 Lab 4A	6	7	8 Lab 4B	9	10 Zy Module6
Inter-Function Communication (6.5-> 6.13)	11	12	13 Quiz 4	14 Quiz 4B	15 Quiz 4C	16 Lab 5	17
Overloading Functions (6.14) One-dimensional arrays (7.1 -> 7.2 in ed 8, 8.1 - 8.2 in edition 9)	18	19	20 Midterm 2 (Ch 4-6)	21	22	23 Lab 5B	24 Zy Module7
One-dimensional arrays (7.3 -> 7.7 in edition 8, chapter 8.3-8.7 in edition 9)	25	26	27	28	29	30 Lab 6	1 Zy Module8
December							
Linear Search (8.1 in ed 8, 9.1 in edition 9) Selection Sort (8.3 in ed 8, 9.3 in edition 9)	2	3	4	5 Zy Module9	6 Quiz 5	7 Lab 7	8
Week of Finals	9 Final (1:45 pm-	10	11	12	13		

All assignments must be turned in by 4:00 pm. on Thursday, June 27th–*No Exceptions*

I. ZyBooks Assignments

Ref	Chapter: (names are mine in some cases)	Points	Due Date
	1.1 Concept of Programming	15	Sept 29
	1.2 First Program		(midnight, means
	1.3 Comments and Presentation of Code on		11:59 PM)
7 1 1 1 1	Page		,
Zy Module1	1.4 Debug: Fixing Syntax & Logic Errors		
	1.5 Computer's View of a Program		
	1.6 Computer Tour		
	1.7 Optional		
	1.8 Problem Solving	15	Oct 6
	1.9 Optional		(midnight)
	1.10 Why Whitespace Matters		(8)
	1.11 C++ Example: Salary Calculation		
	1.12 Working with Strings		
Zy Module2	2.1 '=' Means 'Assign'!		
	2.2 Declaration		
	2 3 Identifiers & Keywords		
	2.4 Expressions with operators '*' '/' '='		
	2.5 Expressions with compound	15	Oct 13
	Assignment Operators	10	(midnight)
	2 6 C++ Example: Health Data		(interingine)
	2.7 Floating Point		
	2.8 Scientific/Exponential Notation		
	2.0 Selentine, Exponential Protation		
	2.10 Built-in functions		
	2.10 Dunt in functions 2.11 Integer Arithmetic & Modulus %		
	2.12 Type conversions		
Zy Module3	2 13 Binary		
Ly Would's	2.13 Dinary		
	2.15 Strings		
	2.16 Integer overflow		
	2.17 Numeric data types		
	2.17 Numeric data types		
	2.10 C++ example: Salary calculation with		
	variables		
	2 20 C++ example: Married-couple names		
	with variables		
	5.1 User-defined function basics	15	Oct 20
	5.2 Simple print function	15	(midnight)
	5.3 Reasons for defining functions		(initianight)
	5.8 How Functions work		
Zy Module4	5.9 Scope of Variable & Function		
Ly Module+	Prototype a k a Function Definitions		
	3 1 If-else branches		
	3.2 If-else		
	3 3 More if-else		
Zy Module5	3.4 Equality and relational operators	15	Oct 27

	3.5 Detecting ranges (general)		(midnight)
	3.6 Detecting ranges with gaps		
	3.7 Detecting multiple conditions with		
	gaps		
	3.9 Example: Toll calculation		
	3.10 Order of evaluation		
	3.11 Switch statements		
	5.10 Functions: Common Errors		
	5.11 Pass by reference		
	4.1 Loops (general)	15	Nov 10
	4.2 While loops		(midnight)
7y Modulo6	4.5 More while examples		
Zy Wioduleo	4.5 More for loop examples		
	4 6 Nested loops		
	4.7 Do-while loops		
	9.1 Output and input streams	15	Nov 24
	9.2 File input		(midnight)
Zy Module7	9.3 C++ example: Parsing and validating		
5	input files		
	9.4 File output		
	6.1 Array/vector concept (general)	15	Dec 1
	6.2 Arrays		(midnight)
	6.3 Array/vector iteration drill		
	6.4 Swapping two variables (General)		
	6.5 Iterating through arrays		
	6.6 Multiple arrays		
Zy Module8	6.7 Loop-modifying or copying/comparing		
	arrays		
	6.8 Functions with array parameters		
	6.9 Engineering examples		
	6.10 Functions with array parameters:		
	Common errors		
	6.11 Engineering examples using functions		
Zy Module9	5.13 Function name overloading	11	Dec 5 (midnight)

II. CodeLab Instructions

How/Where to register:

- 1. Go to <u>www.tcgo1.com</u> OR <u>www.tcgo2.com</u>
- 2. https://codelab.turingscraft.com/courses
- 3.
- 4. #2 is better
- 5. Click "Register for CodeLab"

Later, during enrollment, use Section Access Code: TCAB-31552-GQLE-60

III. Suggested Assignments from Gaddis text - optional

These assignments will be "collected" through quizzes, midterms, and final.

#1	Quiz 1	Chapter 1: p. 24: 1, 3, 7, 9-29, 31, 33-35
	Midterm 1	Binary Worksheet
	Final	Chapter 2: p. 77: 4, 8, 9-21, 27 (page 75 for 8 th ed.)
#2	Quiz 2	Chapter 3: p. 138: 4, 5, 26, 34, 36 (page 136 for 8 th ed.)
	Midterm 1	
	Final	
#3	Quiz 3	Chapter 4: p. 217: 31-41 (page 215 for 8 th ed.)
	Midterm 2	
	Final	
#4	Quiz 4	Chapter 5: p. 293: 36, 37, 39, 40, 41, 42, 43, 44 (page 289 for
	Midterm 2	8 th ed.)
	Final	
	Midterm 2	Chapter 6: p. 369: 2, 33, 34, 37 (page 363 for 8 th ed.)
	Final	
#6	Final	Chapter 7: p. 449: 2, 4, 41,42, 43 (page 443 for 8 th ed)
		Chapter 8: p. 498: 2, 3 (page 490 for 8 th ed) (ch 9 in 9 th
		edition)

N. B. The final is comprehensive

IV Tentative Programming Lab Problems

Lab 0	The BASICS (Student Information)
Lab 1A	Class Information
Lab 1B	Cupertino Restaurant Bill
Lab 2	Functions With No Parameters
Lab 3	Functions With Parameters
Lab 4	If else processing
Lab 4A	Watch videos about scope and respond
Lab 4B	setw, setprecision
Lab 5	Ethiopian Calendar
Lab 5B	Reference Parameters
Lab 6	Array of Student Grades
Lab 7	Array and search