Course: Math 1A - Calculus

Classroom: E36
Term: Summer 2023
College: De Anza College, PSME Division, Mathematics Department
Instructor: Dr. Mo Rezvani
Contact: Send email using RezvaniMohamad@fhda.edu
Text: Calculus Early Transcendentals, 9th Edition (9E), Stewart, Clegg, and Watson; CENGAGE Publishing Co.
Office Hours: None (No Office Hours for Summer session - Will work with emails)
Homework: Will be assigned, and you are responsible to do the homework. Homework will not be graded.
Tests: Plan on giving 3 tests. The lowest graded test will be dropped and replaced with the average of the other two. The tests will be 60% of your grade (20% each). Absolutely no make ups will be given. Test dates may/will change. It will be announced in the class.

Attendance: Mandatory - Will take random attendance.
Midterm: None
Final: One final will be given. Absolutely no make ups will be given. If you have a conflict for the final exam date with another class, you must inform me within the first 2 weeks of classes. No exceptions. Final will be 40% of your grade.

Make ups: Absolutely no make ups will be given.
Scaling/Curving: The scores you make in tests and final mathematically decides your grade. No scaling/curving will be done.

Cheating: Will NOT be tolerated. It will result in an " F " for that test/midterm/final and may lead to an " F " for the course.
Grades: A: 90% to 100%; B+: 87% to 89.99%; B: 83% to 86.99%; B-: 80% to 82.99%; $\mathrm{C}+: 77 \%$ to 79.99%; $\mathrm{C}: 77 \%$ to 70%; D: 60\%
to 70%, $\mathrm{F}: 0 \%$ to 59.99%.
Final Exam: Last day of classes
Drop Policy: It is the responsibility of the student to drop the class after he/she attends the first session.

Week	Start Date	Sections	Special date	
1	$07 / 01 / 2024$	M, T, W, Th	$2.1,2.2,2.3$	No classes omn Thursday, July 4th
2	$07 / 08 / 2024$	M, T, W, Th	$2.5,2.6,2.7,2.8$	exam 1 on Thursday
3	$07 / 15 / 2024$	M, T, W, Th	$3.1,3.2,3.3,3, .4,3.5$	Lectures all week
4	$07 / 22 / 2024$	M, T, W, Th	$3.6,3.9,3.10,4.1$	exam 2 on Thursday
5	$07 / 29 / 2024$	M, T, W, Th	$4.2,4.3,4.4,4.5$	exam 3 on Thursday
6	$08 / 05 / 2024$	M, T, W, Th	$(4.5), 4.7,4.8,4.9$	Final exam on Thursday

Classes Begin July 01, 2024
Credit Hours 5.0
Last Day for Adds July 08, 2024
Census Date July 09, 2024
Last Day for Drops w/ Refund July 02, 2024
Last Day for Drops w/o W July 02, 2024
Last Day for Drops July 30, 2024
Classed End August 8, 2024

MATH 1A - HW problems
$2.1-1,3,5,7,9$
2.2 - Odd ones from 1 to $39(1,3,5, \ldots, 35,37,39)$
2.3 -Odd ones from 1 to $33(1,3, \ldots, 31,33) 45,47,49,53,54$
$2.4-N / A$
$2.5-1,3,7,8,9,10,11,13,15,17,21,23,25,27,29,31,35,43$
$2.6-1,3,5,7,9,15,17,25,31,35,41,47,51$
$2.7-1,5,7,9,13,15,17,18,23,25,27,29,42$
$2.8-1,3,19,21,23,25,27,29,31,35,47$
$3.1-1$ to 41 odd ones ($1,3,5, \ldots .37,39,41$), $59,61,63,79$
$3.2-1$ to 38 odd ones ($1,3,5, \ldots .33,35,37$), 43, 47, 49, 51
$3.3-1$ to 30 odd ones ($1,3,5, \ldots .25,27,29$) and 45 to 60 odd ones ($45,47,49,55,57,59$)
$3.4-1$ to 60 odd ones $(1,3,5, \ldots .55,57,59)$ and $71,77,79,81,85$
$3.5-1$ to 32 odd ones. ($1,3, \ldots ., 29,31$) and $35,43,47$
$3.6-1$ to 32 odd ones. ($1,3, \ldots ., 29,31$) and $39,43,57$
$3.7-N / A$
$3.8-N / A$
$3.9-1$ to 13 odd ones. $(1,3, \ldots ., 9,11,13)$ and 39
$3.10-1,3$, and 11 to 26 odd ones ($11,13,15, \ldots . ., 21,23,25$)
4.1 - 15, 21, 27, and 51 to 66 odd ones ($51,53,55, \ldots . . ., 61,63,65$)
$4.2-5,9,11,13,15,17,19,21$,
$4.3-1,3,9,13,17,21,23,35,39,45,51$
$4.4-1,3,9,15,27,33,41,51,59,65$
$4.5-1,11,19,33,45,53$
4.6-Not required
$4.7-3,7,13,19$
4.8-23 where $x_{1}=1.3, \quad 27$ where $x_{1}=0.8$ and 27 where $x_{1}=-0.8$,
$4.9-1$ to 26 odd ones, 36 to 44 (odd ones)

Student Learning Outcome(s):

- Analyze and synthesize the concepts of limits, continuity, and differentiation from a graphical, numerical, analytical and verbal approach, using correct notation and mathematical precision.
- Evaluate the behavior of graphs in the context of limits, continuity and differentiability.
- Recognize, diagnose, and decide on the appropriate method for solving applied real world problems in optimization, related rates and numerical approximation.

Office Hours:

