Math 1A-63, Spring 2018 (01190)
Calculus (first quarter); TTh 6:30-8:45 pm; S-45
Text: Stewart, Calculus: Early Transcendentals; 8th

Richard Hansen
email: HansenRichard@fhda.edu
web page: http://www.deanza.edu/faculty/hansen

Office Hours: Before class -- MTWTh 5:30-6:20 pm in S-43 (MSTRC)
Syllabus: Fundamentals of differential calculus. Prerequisite: MATH 43 (with a grade of C or better), or appropriate score on Calculus Placement Test within the past calendar year.
Equipment: Graphing calculator, numerical only -- no algebraic calculators -- see more info on the website. Week(Tuesday) Topics (with reference to chapters and sections in Stewart)
1 (4/10) Introduction; 1: 1 (functions); 2: 1-3 (tangents, velocity, function limits)
2 (4/17) 2: 4-5 (definition of a limit, continuity); Quiz \#1
3 (4/24) 2: 6-8 (limits at infinity, rates of change, derivatives); *Test \#1 (April 26)*
4 (5/1) 3: 1-3 (derivatives: polynomials, exponentials, trig functions; rules); Quiz \#2
5 (5/8) 3: 4-6 (chain rule, implicit differentiation, orthogonal trajectory, log functions); Quiz \#3
6 (5/15) 3: 9-10, (related rates, differentials); Quiz \#4
7 (5/22) 4:3,1 (derivatives and graphs, maximum and minimum values); *Test \#2 (24 May)*
8 (5/29) 4: 2, 4-5 (Mean Value Theorem, curve sketching, indeterminate forms); Quiz \#5
9 (6/5) 4: 7-8 (optimization, Newton's Method); Quiz \#6
10 (6/12) 10: 1-2 (parametric equations and curves); Quiz \#7
11 (6/19) *Test \#3 (19 June);* 4: 9 (antiderivatives); Review
12 (6/26) **Final Examination 28 June 6:15-8:15 pm**
Course Requirements: The course will consist of a combination of teacher demonstrations with student participation in discussions, individual, and group work.

1. There will be seven Homework Quizzes during the quarter based upon the suggested problems. No makeups will be given, unless arranged in advance. The lowest quiz will be dropped in computing the course grade. Success in the course requires practice: at a minimum, students should work the problems that are suggested.
2. There will be three in-class Tests. Note the dates; no make-ups will be given, unless arranged in advance. If higher, one-half of the score on the final exam will replace the lowest test score to compute the course grade.
3. There will be a comprehensive two-hour Final Examination, Thursday, June 28, from 6:15 to 8:15 pm. Any student missing the final exam will fail the course; no excuses are acceptable.

Grading: Quizzes (best 6 X possible 25 points each) 150

Tests
Final Exam
(3 X possible 50 points each)
(1 X possible 100 points)

150
100
400 points

Course grades will reflect the following percentage range of total scores:
$A=90 \leq \% \leq 400+\quad[360,400+]$
C $=60 \leq \%<75$
[240, 300)
$\mathrm{F}=$ below 50% (below 200)
$B=75 \leq \%<90$
$[300,360)$
$\mathrm{D}=50 \leq \%<60$
[200, 240)

Grades of B+, B-, and C+ will be used as the final distribution of grades warrants; A- will not be used.
Attendance: Regular attendance is expected. A student who misses any class during the first two weeks of the quarter may be dropped from the course. Inform the instructor, in advance, of any necessary absences; email the instructor if an emergency arises. Note, however, that it is the student's responsibility to formally "drop" the course. Protect your academic record by observing these deadlines:

22 April to drop with no record
4 May for P/NP option
1 June to drop with a "W"

Be sure to check the class website, http://www.deanza.edu/faculty/hansen, and its "Notes to Students" page for updates on our progress through the course material.
The key to success in any mathematics course is doing homework, and the website has a "Suggested Homework Problems" page. Use these problems for practice. They will NOT be collected but will be the basis for the seven Quizzes in the course. The problems are not meant to be comprehensive; you should work additional problems.
The text contains answers for the odd-numbered problems, and problems with red numbers have hints available on the author's website. In addition, the Students' Solutions Manual, containing worked solutions to the odd problems, may be purchased in the Bookstore and is also on reserve in the Learning Center.
Please utilize the Tutorial Center (MSTRC), S-43, for assistance and group work.

Suggested Homework Problems:

Student Learning Outcome(s):

*Analyze and synthesize the concepts of limits, continuity, and differentiation from a graphical, numerical, analytical and verbal approach, using correct notation and mathematical precision.
*Evaluate the behavior of graphs in the context of limits, continuity and differentiability.
*Recognize, diagnose, and decide on the appropriate method for solving applied real world problems in optimization, related rates and numerical approximation.

