Chapter 4 section 3 Notes – Blitzer 7th

Equations and Inequalities Involving Absolute Value

Absolute Value of 'a' denoted by | a | is the distance from 0 to 'a' on the number line.

Rewriting an Absolute Value Equation Without Absolute Value Bars

If c is a positive real number and u represents any algebraic expression, then |u| = c is equivalent to u = c or u = -c.

Example 1: page 276:

Solving an Equation Involving Absolute Value.

Solve: |2x - 3| = 11

Solution:

* Rewrite the equation without the absolute value bars.

Hint: Cover 2x - 3 and ask what value goes there? 11 or -11. So...

$$2x - 3 = 11$$
 or $2x - 3 = -11$

* Solve the equations

$$X = 7$$
 $x = -4$

Check.

Try:

Example 2: Page 276 Solve: 5 | 1 - 4x | = 0

How about: 5 | 1 - 4x | - 15 = 0

What about: |3x - 1| = |x + 5|

Guidelines for solution.

- 1) Rewrite without the absolute value bars. Be sure that there are two equations.
- 2) Solve each equation.
- 3) Check.

Inequalities Involving Absolute Value

|x| < 2 distance from 0 to x on the number line that is less than 2.

Solving Absolute Value Inequalities of the Form |u| < c

If c is a positive real number and u represents any algebraic expression, then

$$|u| < c$$
 is equivalent to $-c < u < c$.

This rule is valid if < is replaced by ≤.

Solving an Absolute Value Inequality of the Form |u| < c

Example 4: page 278:

Solve and graph the solution set on the number line:

$$|x-4| < 3$$

Solution:

1) Rewrite without the absolute value bars:

$$-3 < x - 4 < 3$$

2) Solve the compound inequality

1) Graph the solution

Try:
$$-2|x+5| + 7 \ge -13$$

To solve, isolate the absolute value expression. Get only the expression on the left side of the equation.

Try 2:
$$|3x + 5| < 17$$

Absolute value inequalities of the form: | u | > c

|x| > 2 Distance from 0 to x on the number line that is greater than 2.

Solving Absolute Value Inequalities of the Form |u| > c

If c is a positive real number and u represents any algebraic expression, then

$$|u| > c$$
 is equivalent to $u < -c$ or $u > c$.

This rule is valid if > is replaced by \ge .

Example 6: page 280:

Solve and graph the solution set on the number line.

$$|2x + 3| \ge 5$$

Solution:

- 1) Rewrite without the absolute value bars $2x + 3 \le -5$ or $2x + 3 \ge 5$
- 2) Solve the inequalities
- 3) Graph the solution set.

Try: |2x-5| > 3

Try 2: |5x - 2| > 13

Another way to solve Absolute Value Inequalities.

|x-4| < 3 $|2x+3| \ge 5$

- 1) Replace the inequality symbol with an equal sign |x-4| = 3
 - |x-4| = 3 |2x+3| = 5
- 2) Solve the equation.

$$x-4=3 \text{ or } x-4=-3$$

 $x=7 \text{ or } x=1$

$$2x + 3 = 5 \text{ or } 2x + 3 = -5$$

 $x = 1 \text{ or } x = -4$

3) Graph these points on the number line. Note the original inequality.

- 4) Notice on both graphs, there are 3 regions. Pick a point in each region as a test point and put into the original inequality. If the inequality become true, one shades that region. If false, then one does not shade.
- 5) Take x = 0. Do the substitution, |x-4| < 3 $|2x+3| \ge 5$ |0-4| < 3 $|2(0)+3| \ge 5$ |-4| < 3 $|0+3| \ge 5$ 4 < 3 false $3 \ge 5$ false

Do not shade the region that has 0

6) Tries the other regions. The regions that are true, is the solution and shading occurs.

Try:
$$-2|5-x|<-6$$

Summary:

If c > 0

- | u | = c is equivalent to u = c or u = c
- | u | < c is equivalent to c < u < c
- | u | > c is equivalent to u < c or u > c