Chapter 2 Section 3

The Algebra of Functions
Domain of a Function: largest set of real numbers for which the value of $f(x)$ is a real number. Example 1: page 127
Find the domain of the function.
a) $f(x)=3 x+2$
b) $\mathrm{g}(\mathrm{x})=\frac{3 x+2}{x+1}$

What values of x makes the function defined?
Domain of $\mathrm{f}:(-\infty, \infty)$
b) Since it is a fraction, what values of x makes the function not defined?

When $x=-1$, the fraction is not defined, so one has to eliminate this value from the domain.
Domain of $\mathrm{g}:(-\infty,-1) \cup(-1, \infty)$, union, or

Find the domain: $\mathrm{f}(\mathrm{x})=\frac{1}{x+5}$
Algebra of Functions
Combine function using addition, subtraction, multiplication, and division.
Sum: $\mathrm{f}+\mathrm{g}:(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
Difference: $\mathrm{f}-\mathrm{g}:(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
Product: $\mathrm{fg}:(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \bullet \mathrm{g}(\mathrm{x})$
Quotient: $\frac{f}{g}:\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
Example: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}, \mathrm{g}(\mathrm{x})=\mathrm{x}-1$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$=2 \mathrm{x}+(\mathrm{x}-1)$

$$
=3 x-1
$$

$(f-g)(x)=f(x)-g(x)$
$=2 \mathrm{x}-(\mathrm{x}-1)$
$=2 \mathrm{x}-\mathrm{x}+1$
$=x+1$

$$
\begin{aligned}
(\mathrm{fg})(\mathrm{x}) & =\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \\
& =2 \mathrm{x} \cdot(\mathrm{x}-1) \\
& =2 x^{2}-2 x \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \\
& =\frac{2 x}{x-1}, \mathrm{x} \neq 1
\end{aligned}
$$

Example 2: page 128
c) $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-3, \mathrm{~g}(\mathrm{x})=4 \mathrm{x}+5$, find $(\mathrm{f}+\mathrm{g})(3)$

