Chapter 2 Section 1

Introduction to Functions

Relation: any set of ordered pairs
Domain: first component of the ordered pair
Range: second component of the ordered pair
Find the domain and range of the relation $\{(0,9.1),(10,6.7),(20,10.7),(30,13.2),(40,21.2)\}$

Function: relation in which each member of the domain corresponds to exactly one member of the range.

- Relation in which no two ordered pairs have the same first component and difference second components.

Example 2: page 107
Determine whether each relation is a function
a) $\{(1,5),(2,5),(3,7),(4,8)\}$
b) $\{5,1),(5,2),(7,3),(8,4)\}$

Functions as Equations and Function Notation
Notation: $f(x)$, read " f of x " or " f at x " represents the value of the function at the number x .
$f(x)=2 x+3$, find $f(4)$
Example 3: page 109
b) Find $g(-2)$ if $g(x)=2 x^{2}-1 \quad$ d) $F(a+h)$ for $F(x)=5 x+7$

Functions Represented by Tables and Function Notation
Example 4: page 110
The following table defines the function f :

x	$f(x)$
-2	5
-1	0
0	3
1	1
2	4

a) Explain why the table defines a function
b) Find the domain and range
c) Find $f(-1)$
d) Find $f(0)$
e) Find x such that $f(x)=4$

