Chapter 1 Section 1, 2 Addition, subtraction

Sets – collection of objects finite infinite

Whole numbers – natural numbers or counting numbers Whole includes zero. $\{0, 1, 2, 3, 4, ...\}$ Natural numbers $\{1, 2, 3, 4, ...\}$

Number line graphing

Example 1: page 3 Graph the whole numbers 1, 3 and 5 on the number line/

Order of numbers

Place value

345

Expanded form or notation: 3 hundred 4 tens 5 ones $3 \times 100 + 4 \times 10 + 5 \times 1$

Example 3: page 5

Write the number 23, 712 in expanded notation

Rounding whole numbers 5 or more increase, less than 5 leave. Rule on page 6

Example 5: page 6 Round the number 8, 769 to the nearest ten.

Example 6: page 7 round the number 4 7 34 to the nearest hundred. Addition of Whole numbers (ADD 2)

Problems that occur * Not line up properly Solution: Use line paper vertically. Line up the numbers so that the numbers are align to the right.

Page 18, example 1:

1,234 + 498

	1	2	3	4	
+		4	9	8	

Another way: 1,234 in expanded form is: 1 x 1000 + 2 x 100 + 3 x 10 + 4 x 1

498 expanded form is: 4 x 100 + 9 x 10 + 8 x 1

Add the corresponding place value

 $1 \times 1000 + 2 \times 100 + 3 \times 10 + 4 \times 1$ $\frac{4 \times 100 + 9 \times 10 + 8 \times 1}{\text{So}}$ $1 \times 1000 + 6 \times 100 + 12 \times 10 + 12 \times 1$ $12 \times 10 \text{ is}$ $1 \times 100 + 2 \times 10 \text{ and}$ $12 \times 1 \text{ is}$ $\frac{1 \times 10 + 2 \times 1 \text{ so}}{1 \times 1000 + 7 \times 100 + 3 \times 10 + 2 \times 1 \text{ so the answer is}}$ $1 \times 1000 + 7 \times 100 + 3 \times 10 + 2 \times 1 \text{ so the answer is}$

Perimeter of a polygon is the sum of the sides.

Find the perimeter of the rectangle below:

Subtraction (sub 2)

Page 20, Example 3 Simplify: 1, 755 – 328 The standard 1755 borrow from the 5 in the 10's which becomes 4 and add 10 to the 5 in the ones - 328 So 1 7 4 15 - 3 2 8

1427

The reasoning is one of subtraction and adding the same value does not change the problem. Example: subtract 5 and add 5 to any number, the results is the same.

Looking a place value of the subtrahend,	1 x 1000 + 7 x 100 + 5 x 10 + 5 x 1
Do the subtraction and adding 10:	1 x 1000 + 7 x 100 + 4 x 10 + 15 x 1
This now makes it possible to subtract the	e minuend: $3 \times 100 + 2 \times 10 + 8 \times 1$
Thus the difference:	1 x 1000 + 4 x 100 + 2 x 10 + 7 x 1
The answer:	1427

Another way to look at the same problems is to add the same number to the top and bottom.

Example: 45 – 18. Add 2 to both numbers: 47 – 20. The answer to both problems is 27.

So in the previous problem: 1755 – 328. One will add 10 to the bottom and 10 to the top

 $\frac{1 \times 1000 + 7 \times 100 + 5 \times 10 + 15 \times 1}{3 \times 100 + 3 \times 10 + 8 \times 1}$ $\frac{1 \times 1000 + 4 \times 100 + 2 \times 10 + 7 \times 1}{1 \times 27}$ answer $\frac{1}{4}$

Without expanded form:	
1755	17 5 15
- 328	- 3 3 8
	1427

For more information:

http://www.themathpage.com/Arith/subtract-whole-numbers-subtract-decimals.htm

Other techniques:

Back to the add the same value to the top and bottom:

692	692+2	694
- 378	378+2	380
3904	3904+25	3929
- 1775	1775+25	1800

Evaluate x - y where x = 7061 and y = 3229

Grouping Symbols Affects the order that expressions are to be evaluated. (), {}, []

The expression inside – evaluate first

(3 + 4) + 5

2 + [3 + (4 + 5)]