Chapter 1 Section 1, 2
Addition, subtraction
Sets - collection of objects
finite infinite

Whole numbers - natural numbers or counting numbers
Whole includes zero.
$\{0,1,2,3,4, \ldots\}$
Natural numbers
$\{1,2,3,4, \ldots\}$
Number line graphing
Example 1: page 3
Graph the whole numbers 1, 3 and 5 on the number line/
Order of numbers

Place value

345
Expanded form or notation:
3 hundred 4 tens 5 ones
$3 \times 100+4 \times 10+5 \times 1$
Example 3: page 5
Write the number 23, 712 in expanded notation
Rounding whole numbers
5 or more increase, less than 5 leave.
Rule on page 6
Example 5: page 6
Round the number 8, 769 to the nearest ten.
Example 6: page 7
round the number 4734 to the nearest hundred.

Addition of Whole numbers
(ADD 2)

Problems that occur

* Not line up properly

Solution:
Use line paper vertically.
Line up the numbers so that the numbers are align to the right.
Page 18, example 1:
$1,234+498$

+	1	2	3	4	
		4	9	8	

Another way:
1,234 in expanded form is:
$1 \mathrm{x} 1000+2 \mathrm{x} 100+3 \mathrm{x} 10+4 \times 1$

498 expanded form is:
$4 \times 100+9 \times 10+8 \times 1$
Add the corresponding place value
$1 \times 1000+2 \times 100+3 \times 10+4 \times 1$ $4 \times 100+9 \times 10+8 \times 1$
So
$1 \times 1000+6 \times 100+12 \times 10+12 \times 1$
12×10 is
$1 \times 100+2 \times 10$ and
12×1 is
$1 \times 10+2 \times 1$ so
$1 \times 1000+7 \times 100+3 \times 10+2 \times 1$ so the answer is
1732

Perimeter of a polygon is the sum of the sides.
Find the perimeter of the rectangle below:

Subtraction
(sub 2)
Page 20, Example 3
Simplify: 1, 755-328
The standard
1755 borrow from the 5 in the 10 's which becomes 4 and add 10 to the 5 in the ones - 328

So 17415
-328
1427
The reasoning is one of subtraction and adding the same value does not change the problem. Example: subtract 5 and add 5 to any number, the results is the same.

Looking a place value of the subtrahend, $1 \times 1000+7 \times 100+5 \times 10+5 \times 1$
Do the subtraction and adding 10: $1 \times 1000+7 \times 100+4 \times 10+15 \times 1$
This now makes it possible to subtract the minuend: $3 \times 100+2 \times 10+8 \times 1$
Thus the difference:
$1 \times 1000+4 \times 100+2 \times 10+7 \times 1$
The answer:
1427
Another way to look at the same problems is to add the same number to the top and bottom.
Example: 45-18. Add 2 to both numbers: $47-20$. The answer to both problems is 27 .
So in the previous problem: $1755-328$. One will add 10 to the bottom and 10 to the top

$$
\begin{aligned}
& 1 \times 1000+7 \times 100+5 \times 10+15 \times 1 \\
& \frac{-}{1 \times 1000+4 \times 100+3 \times 10+8 \times 1} \\
& 1427
\end{aligned}
$$

Without expanded form:
1755
$17 \quad 515$

- $\quad 328$

$$
\begin{array}{rrr}
-3 & 3 & 8 \\
14 & 2 & 7
\end{array}
$$

For more information:
http://www.themathpage.com/Arith/subtract-whole-numbers-subtract-decimals.htm
Other techniques:
Back to the add the same value to the top and bottom:

692	$692+2$	694
$-\quad 378$		
	$378+2$	380
	$3904+25$	3929
-1775		

Evaluate $\mathrm{x}-\mathrm{y}$ where $\mathrm{x}=7061$ and $\mathrm{y}=3229$
Grouping Symbols
Affects the order that expressions are to be evaluated.
(), \{\}, []

The expression inside - evaluate first
$(3+4)+5$
$2+[3+(4+5)]$

