Angular Momentum Notes

Angular Momentum

<u>Def</u>: If a particle has linear momentum \vec{p} at position \vec{r} relative to origin "o", then its angular momentum \vec{L} relative to origin "o" is given by:

- a) The magnitude of and direction of \vec{L} depend on the choice of origin.
- b) The direction of \vec{L} is given by the RHR.
- c) The SI unit of \vec{L} is the m.kg. m/s = kg m²/s

Ex. A particle of mass 'm' is moving along the x-y plane with constant velocity \vec{v} parallel to the x-axis at at y = ℓ . Find \vec{L} relative to the origin.

Angular Momentum for a Rotating Body

Consider a body rotating about the z-axis with constant angular velocity $\vec{\omega}$.

Let's look at the angular momentum of an mi particle at a distance ri from the axis of rotation:

Net Torque on a System

Consider a system rotating about an axis due to a net external torque:

$$\sum \vec{\tau}_{ext} = I\vec{\alpha}$$

This net torque will cause the system to experience an angular acceleration:

$$\vec{\alpha} = \frac{d\vec{\omega}}{dt}$$

Which means that $\vec{\omega}$ change. If $\vec{\omega}$ changes, then so will \vec{L}_{sys} also change since:

$$\vec{L}_{sys} = I\vec{\omega}$$

Question, is how will \vec{L}_{SYS} of the system change? Let's differentiate $\vec{L}_{sys} = I\vec{\omega}$ to see how \vec{L}_{SYS} changes:

$$\frac{d\vec{L}_{sys}}{dt} = I\frac{d\vec{\omega}}{dt} = I\vec{\alpha}$$

However,

$$\sum \vec{\tau}_{ext} = I\vec{\alpha}$$

Therefore,

(1)
$$\sum \vec{\tau}_{ext} = \frac{d\vec{L}_{sys}}{dt}$$
 Net Torque on a System

This equation is the rotational analog of $\sum \vec{F}_{ext} = \frac{d\vec{P}_{sys}}{dt}$

If
$$\sumec{ au}_{ext}=0=rac{dec{L}_{sys}}{dt}$$
 , then

$$\vec{L}_{sys} = constant$$

$$\vec{\Delta L}_{sys} = 0$$

$$\vec{L}_i = \vec{L}_f$$
Conservation of Angular Momentum

Thus,

$$\begin{array}{l} E_i = E_f \\ \vec{p}_i = \vec{p}_f \\ \vec{L}_i = \vec{L}_f \end{array} \\ \hline \end{array} \\ \begin{array}{l} \text{Conservation Laws for an Isolated System} \\ \hline \end{array} \\ \end{array}$$

In component form:

$$\vec{L}_{i} = \vec{L}_{f} \Longrightarrow \begin{cases} L_{ix} = L_{fx} & \text{if } \sum \tau_{ext(x)} = 0\\ L_{iy} = L_{fy} & \text{if } \sum \tau_{ext(y)} = 0\\ L_{iz} = L_{fz} & \text{if } \sum \tau_{ext(z)} = 0 \end{cases}$$

Going back to Equation (1),

$$\sum \vec{\tau}_{ext} \left(t \right) = \frac{d\vec{L}_{sys}}{dt}$$

$$\sum_{i=1}^{l} \vec{\tau}_{ext}(t) = \frac{d\vec{L}_{sys}}{dt}$$
$$d\vec{L}_{sys} = \sum_{i=1}^{l} \vec{\tau}_{ext}(t) dt$$
$$\int_{\vec{L}_{i}}^{\vec{L}_{f}} d\vec{L}_{sys} = \int_{t_{i}}^{t_{f}} \sum_{i=1}^{l} \vec{\tau}_{ext}(t) dt$$
$$\Delta \vec{L}_{sys} = \int_{t_{i}}^{t_{f}} \sum_{i=1}^{l} \vec{\tau}_{ext}(t) dt$$

In a collision we define $\Delta \vec{L}_{sys}$ to be the angular impulse:

$$\vec{J} = \Delta \vec{L}_{SYS}$$
 Angular Impulse Vector

Thus,

$$\vec{J} = \Delta \vec{L}_{sys} = \int_{t_i}^{t_f} \sum \vec{\tau}_{ext} (t) dt$$
 Impulse Angular- Momentum Theorem

For an isolated system:

$$\sum \vec{\tau}_{ext}(t) = 0 \implies \vec{J} = \Delta \vec{L}_{sys} = 0$$
 (Conservation of \vec{L}_{sys})

However,

- 1. If $\sum \vec{\tau}_{ext}(t)$ is negligibly small, then $\vec{J} = \Delta \vec{L}_{sys} \approx 0$ 2. If $\sum \vec{\tau}_{ext}(t)$ acts for a very short period of time, then $\vec{J} = \Delta \vec{L}_{sys} \approx 0$