Angular Momentum Notes

Angular Momentum

Def: If a particle has linear momentum \vec{p} at position \vec{r} relative to origin " 0 ", then its angular momentum \vec{L} relative to origin " 0 " is given by:

$$
\vec{L}=\vec{r} \times \vec{p} \text { Angular Momentum }
$$

$$
L=r p \sin \theta \text { Magnitude of } \vec{L}
$$

$\odot \stackrel{\rightharpoonup}{\imath}$
a) The magnitude of and direction of \vec{L} depend on the choice of origin.
b) The direction of \vec{L} is given by the RHR.
c) The SI unit of \vec{L} is the $\mathrm{m} . \mathrm{kg} . \mathrm{m} / \mathrm{s}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$

Ex. A particle of mass ' m ' is moving along the $x-y$ plane with constant velocity \vec{v} parallel to the x -axis at at $\mathrm{y}=\ell$. Find \vec{L} relative to the origin.

Angular Momentum for a Rotating Body
Consider a body rotating about the z-axis with constant angular velocity $\vec{\omega}$.

Let's look at the angular momentum of an m_{i} particle at a distance r_{i} from the axis of rotation:

$$
\begin{aligned}
& \overrightarrow{L_{l}}=\vec{r}_{\imath} \times \overrightarrow{p_{\imath}}=r_{i} m_{i} v_{i} \hat{k} \\
& L_{i z}=r_{i} m_{i} r_{i} w_{i} \\
& L_{i z}=m_{i} r_{i}^{2} w \\
& L_{z}=\sum L_{i z}=\left(\sum m_{i} r_{i}^{2}\right) w \\
& L_{z}=I w_{z} \text { Angular Momentum about the z-axis } \\
& \vec{L}_{\text {sys }}=I \vec{\omega} \text { Angular Momentum vector }
\end{aligned}
$$

Ex. Rotating Sphere

$$
\begin{aligned}
& \vec{\imath}= \pm \vec{\omega} \\
& \vec{L}=\left(\frac{2}{5} M R^{2}\right) \omega \hat{\mu}
\end{aligned}
$$

Net Torque on a System

Consider a system rotating about an axis due to a net external torque:
$\sum \vec{\tau}_{\text {ext }}=I \vec{\alpha}$
This net torque will cause the system to experience an angular acceleration:
$\vec{\alpha}=\frac{d \vec{\omega}}{d t}$
Which means that $\vec{\omega}$ change. If $\vec{\omega}$ changes, then so will $\vec{L}_{\text {sys }}$ also change since:
$\vec{L}_{s y s}=I \vec{\omega}$
Question, is how will $\vec{L}_{\text {sys }}$ of the system change? Let's differentiate $\vec{L}_{s y s}=I \vec{\omega}$ to see how $\vec{L}_{\text {Sys }}$ changes:
$\frac{d \vec{L}_{s y s}}{d t}=I \frac{d \vec{\omega}}{d t}=I \vec{\alpha}$
However,
$\sum \vec{\tau}_{\text {ext }}=I \vec{\alpha}$
Therefore,
(1) $\sum \vec{\tau}_{\text {ext }}=\frac{d \vec{L}_{\text {sys }}}{d t}$ Net Torque on a System

This equation is the rotational analog of $\sum \vec{F}_{\text {ext }}=\frac{d \vec{P}_{s y s}}{d t}$
If $\sum \vec{\tau}_{e x t}=0=\frac{d \vec{L}_{s y s}}{d t}$, then

$$
\begin{gathered}
\vec{L}_{\text {sys }}=\text { constant } \\
\overrightarrow{\Delta L}_{\text {sys }}=0 \\
\vec{L}_{i}=\vec{L}_{f} \\
\hline
\end{gathered}
$$

Thus,

In component form:
$\vec{L}_{i}=\vec{L}_{f} \Rightarrow\left\{\begin{array}{l}L_{i x}=L_{f x} \text { if } \sum \tau_{\text {ext }(x)}=0 \\ L_{i y}=L_{f y} \text { if } \sum \tau_{\text {ext }(y)}=0 \\ L_{i z}=L_{f z} \text { if } \sum \tau_{\text {ext }(z)}=0\end{array}\right.$

Going back to Equation (1),

$$
\sum \vec{\tau}_{e x t}(t)=\frac{d \vec{L}_{s y s}}{d t}
$$

$$
\begin{gathered}
\sum \vec{\tau}_{\text {ext }}(t)=\frac{d \vec{L}_{\text {sys }}}{d t} \\
d \vec{L}_{\text {sys }}=\sum \vec{\tau}_{\text {ext }}(t) d t \\
\int_{\vec{L}_{i}}^{\vec{L}_{f}} d \vec{L}_{\text {sys }}=\int_{t_{i}}^{t_{f}} \sum \vec{\tau}_{\text {ext }}(t) d t \\
\Delta \vec{L}_{\text {sys }}=\int_{t_{i}}^{t_{f}} \sum \vec{\tau}_{\text {ext }}(t) d t
\end{gathered}
$$

In a collision we define $\Delta \vec{L}_{s y s}$ to be the angular impulse:
$\vec{J}=\Delta \vec{L}_{\text {sys }}$ Angular Impulse Vector
Thus,

$$
\vec{J}=\Delta \vec{L}_{s y s}=\int_{t_{i}}^{t_{f}} \sum \vec{\tau}_{\text {ext }}(t) d t \text { Impulse Angular- MomentumTheorem }
$$

For an isolated system:

$$
\left.\sum \vec{\tau}_{\text {ext }}(t)=0 \Rightarrow \vec{J}=\Delta \vec{L}_{s y s}=0 \quad \text { (Conservation of } \vec{L}_{s y s}\right)
$$

However,

1. If $\sum \vec{\tau}_{\text {ext }}(t)$ is negligibly small, then $\vec{J}=\Delta \vec{L}_{\text {sys }} \approx 0$
2. If $\sum \vec{\tau}_{\text {ext }}(t)$ acts for a very short period of time, then $\vec{J}=\Delta \vec{L}_{\text {sys }} \approx 0$
